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ABSTRACT
The local solvability of the initial-boundary value problem in spaces of
summable functions for some one-dimensional system of equations of ther-
moviscoelasticity is established. The nonlinearities in equations are de-
termined by the difference between Lagrangian and Eulerian coordinates.
The coercive approach implies a necessary condition on the initial data.

1.
The purpose of this paper is to establish a local solvability of the initial-boundary

value problem associated with the equations of one-dimensional physical linear

thermoviscoelasticity

(1) ugy — kauy, — kao[(1+ ul) Tug), — ks = f(t,z)
(t,z) € @ =[0,t0] x [0,1], ki > 05

(2) 6 — kal(1+ul) 7 0, — ksBug, + ka(uiy)’ = @(t,2), (t2) €Q k>0

(3) u(O,x) = UO(.’C), u;(O,:c) = ul(z) (O Sz< 1),
u(t,0) =u(t,1) =0 (0<t<to);

(4)  6(0,2)=6p(z) (0<z<1), B(t0)=60(t1)=0 (0<t<tp).
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Here u(t,z) and 8(t, z) denote displacement and temperature of a medium. The
equations (1) and (2) are the conservation laws of impulse and energy in La-
grangian coordinates, respectively. The model (1)-(4) is constructed under the
following conditions: 1) the stress tensor (one-dimensional) is a linear combina-
tion of Almansi strain tensor and the tensor of velocity of deformations; 2) the
internal energy is a linear combination of the temperature and a square of the
strain; 3) the Fourier law for a heat conduction is valid.

The cases of thermoelasticity (k; = 0) and viscoelasticity (8 = 0) were consid-

ered in [3] and [4], [5]. Here we establish similar results in the general case.

2.

A solution of problem (1)-(4) is defined to be a pair of functions u(t, z), 6(¢,z)
having all (generalized) derivatives contained in the equations (1)~(2) in L, =
L,(Q), 1< p < 400 and satisfying equations (1)-(2) and conditions (3)—(4).
It is supposed in addition that

(5) 1+ug(t,z) >0, (tz)€Q.

Let W™ (see [1]) be a Banach space of the functions on Q having in L,(Q)
all derivatives up to order k with respect to ¢t and up to order m with respect
to . Let W: be a Banach space of the functions ¢(z), 0 < z < 1, having
all derivatives up to order k (not necessary integer) in Ly[0,1]. We denote by
I lems |-l&s li-llo and |- |o the norms in W™ WF,L,(Q) and L,[0,1],
respectively. And finally, we use the notation

0

WE = {p(2) : p(z) € WE,0(0) = p(1) = 0}.
THEOREM 1: Let f,¢ € L, for some p € (3,00). Let ug € pf/?" Uy € vf;g-ﬁp,
6 € V;’;—Z/P. Let
(6) 1+uh(z)>0, 0<z<1

Then for sufficiently small ty there exists a unique solution of the problem (1)-(4).

Note that the necessity of our conditions on initial data follows from the prop-
erties of solutions (see below) of problem (1)-(4) according to results on linear

parabolic initial-boundary value problems from [2).
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3.

Now we shall give a sketch of the proof of Theorem 1. Consider a certain set
Sg in W}2. Take an arbitrary 6 € S and find a solution u of problem (1), (3).
Then find a solution & of problem (2), (4) for this u. Denote by I the operator
assigning 6 to 8. We shall show that the operator 9 has a unique fixed point
0 in Sg for sufficiently small ¢, and, hence, the pair §,u (u being solution of
problem (1), (3) for this ) is a unique solution of problem (1)-(4). The auxiliary
results on solvability and estimates for solutions of a certain linear problems are
established in §4, solvability and estimates of problems (1), (3) and (2), (4) are
obtained in §5 and §6. The direct proof of Theorem 1 is in §7.

4.

Let us consider at first the linear problem:

(7) 'U: - k2[(1 + u:)(x))—lv'z '1: = Z(t,.’L‘), (t’ :L‘) € Q;

(8) v(0,z) =us(z), 0<z<1; o(t,0)=0v(t,1)=0, 0<t<t,.

From [2] and [6] it follows that the problem (7)-(8) has a unique solution for any
0 g

z€L,and u; € W,z, 2r ( uo(z) satisfies the conditions of Theorem 1) and the

estimate

© vl + o 1ot 2)la-a/p < Mi(llllo +luala—ayy)

holds. Here M, depends on uq(z).

The continuous embedding (see [1])
(10) W2-2P c CM0,1] (3<p< o)
and (9) imply the inequality

11 '(t,z)| < M. —2/p)-
(1) mex [0,(6,2)] < Ma(llllo + usla-as5)

Choosing p; € (3,p) and using inequalities (9) and (10) for the chosen p; it is
easy to show that inequality

(12)  max [6(t9) = 50, < M (I5llz + 150, Dlassp)

-3
0<7o<£3—,
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is valid for arbitrary 4(t,z) € W%
This and (9) yield

(13) (1) = vy ()] < Mt (=l + s o)

Now consider the problem

(14) uge — krug, — k(1 + up(@)) T uly = w(tz), (t2) €@

(15) u(0, z) = tio(2), uy(0, z)=w(z), 0<z<1;
u(t,0)=u(t,1)=0, 0<t <.

Denoting u} = v , representing equation (14) in the form (7) with
t
(16) z=w+k / vl (s, 2)ds + ug
0

and inversing the operator generated by problem (7)-(8) in L,, we obtain the
following result.

LEMMA 1: Forany w € Ly, iig € V‘I)/f,_zlp and ug, u; satisfying the conditions of
Theorem 1 the problem (14)-(15) has a unique solution and the estimate

(17) Nlu|ll < My (io, u1, w)

holds. Here
lelll = utello + Nluizzllo + lluzzllo + liullo,
M(tho, u1, w) = |dal2 + u1lz-2/p + |wllo-
In addition to Lemma 1 we have

LEMMA 2: Under the conditions of Lemma 1 for a solution of problem (14)-(15)
the inclusions

(18) u, Uy, Uy, € C[Q)
and estimates

(19) (Joax lui(t, z) — ug(z)| < Metd M(do,ur,w), Nn=r+1
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(20) (oax, luze(t, z) — uy(2)] < Matg*M(do, ur,w), 72 = 705
(21) OI<nta<J§ Iulz’z(t’ I) - uf,'(x)|o < Mstgam(ﬂ(l?ul’w)’ 13=1- 1/11
N Y]

are valid.

Proof of Lemma 2: From the definition of a solution of problem (14)-(15) it
follows that z defined by (16) belongs to L,. Then v = u} is a solution of
problem (7)—(8) for this 2. Therefore, u}, = v} is continuous and the estimate
(20) follows from (13).

Since

t
(22) ul(t,z) —ul(0,z) = / uy, (s, z)ds,
0

the estimate (19) follows from (20). In order to obtain inequality (21) we have
to differentiate (22) by z and apply Holder’s inequality and estimate (17).
Lemma 2 is proved. |

Let u! and u? be solutions of problem (14)-(15) for w = w! and w = w?

respectively.

LEMMA 3: Let w' € L,(i = 1,2) and uo, fig, u1 satisfy the conditions of Lemma

2. Then there are inequalities

0 a
(23) (tn:?é!Q la—xul(t,x) — b;uz(t,z)l _<_ Mgtg“”‘wl - w2||0,
Ye=% +1;
62 1 62 2 s 1 2
(24) (E??Qlatazu (t,z) — Btaa:u (t,a:)l < Myt |lw' — w|le,
Y5 = o5
82 1 62 2 Y6 1 2
(25) orélta&)so |5x—2u (t,.‘L‘) - @u (t,:c)|0 S Mlltg ||w —w "0,
Y6 = 1- l/p

The proof of the lemma easily follows from the linearity of problem (14)-(15)
by means of inequalities (19)—(21).
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5.
Let us assume that § is known and let us study solvability of problem (1),(3).

THEOREM 2: Let f, ug, uy satisfy the conditions of Theorem 1 and 8 € W‘?’l.
Let

(26) m(UOaulaf) < Ry, ”0;" < Ry.

Then there exists sufficiently small to such that the problem (1), (3) has a unique

solution and the estimates

(27) llulll < Mas;
(28) (max lul(t,z) — up(2)} < Mastd", y1="1;
(29) s lul(t,2) — ()] < Mk, 7= 72

hold. Here M; = M;(Ry, Ro), to # to(Ro).

Proof of Theorem 2: Let us represent problem (1), (3) in the form

(30) ugy = ko[(1 +up(@)) ]y — kg, = f + ks6;

thalug — g (1 +ug) T (L4 up) g, = ka(ug — wp)(1 +un) (L up) g ug
~ka(up — wp)(1+up) TN (1 + wp) Mgy + ka(up — )1+ up) T+ up) Tt
(31) u(0,z) = up(z), uy(0,z) =ui(z), u(t,0)=u(t,1)=0.

Denote the right-hand side of (30) by w. Let

(32) u = L™ ug,u1,w)

where L~! is the operator defined by the solution of (14)—(15).
Using relations (30)—(31) and L~ we reduce problem (1), (3) to the equivalent

integral equation

(33) w = K(w)
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where
(34) K(w) = f + kge + kz[Kl(w) - Kz(w) - K3(W) + K4(w)],
(35) Ey(w) = (ug —uz, )1 +up) (L +u) Tup, (= Fi(w));

(36) Ka(w) = (ug — up)(1+up) (L 4+ ug) ufu, (= Fa(u));
37) Ks(w) = (ug —uz)(1+up) 7 (L +ug) Puipug (= Fa(u));

(38) Ky(w) = (wg — uz)(1 +u3) 7' (1 +up) Mgz, (= Fa(w).
We have in mind
(39) u =L (ug,us,w).

We establish unique solvability of (33) by means of the fixed-point theorem for

contractions. Let
Sr, ={w:we€ Ly, |lwllo < R:}.

LEMMA 5: Let Ry be sufficiently large and ty be sufficiently small. Then we have

the inclusion
(40) KSp, C Sg,-

LEMMA 6: Under conditions of Lemma § for any wy, wa € Sgr, we have the

inequality

(41) | K (w1) = K(wa)llo < Mistg®|lwy —welle, 9 > 0.

Proof of Lemma 5: At first let us prove that for any

Tﬂ -nN —_ : !
(1t S(RR+2RIT (mo= mig [1+ (),
there is the inequality

(43) 1+t 2)| < 2my
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Really, from (39) and (20), (26) for f = w we get
1+ u(t,2)] 2 |1+ up(e)] - max |ui(t,2) — ug(2)]
> mo — Mgt M(uo, u1,w) > mo — Msty' (Rz + 2Ry).
This implies (43) in view of (42). Next, estimating K(w) and using (34) and

(26), we have

4 4
IE w)llo < 1fllo + ksll8llo + ks Y I Ki(w)llo < Ri+ ksRo + Y I1Ki(w)llo-

i=1 i=1

Estimating the || - |lo -norm of the term containing the highest derivative and
the uniform norm of the other terms and using inequalities (17), (20), (26) and
(43), we obtain

|Ka(w)llo < Mistd M2 (uo, uy, w) < Mystd (Rz + Ry)%.
In a similar way we get
[ Ki(w)llo £ Mistg'(Rz + Ry), i#4.
From the latter inequalities it follows that
(44) | K(w)llo < Ry + ksRo + Myt (Jlwllf + RY).

Choosing R; > Ry + k3 Ry and tg sufficiently small, we get (40). Lemma 4 is
proved. |

Proof of Lemma 5: It is sufficient to prove the inequalities
(45) 1 Ki(wn) = Ki(w2)llo < Maotg’Jlwr — wallo, 1<:<4
We consider only the case 7 = 4. It is obvious that

Ky(w1) = Ka(wa) = (ug ~ uf)(1+up) 7 (14 uf) 7 [uz, — viz,

F(up — ul)(1 +up) (14 ul) T+ ) (v — g,
+(ul = vL)(1 +up) (A +v) gy,

Here u = L™ (ug,u1,w1), v = L™ (ug,u1,wz). Using estimates (17), (14), (23),

(43) and estimating the || - |lo norm of the highest derivatives and the uniform
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norm of the lower derivatives, we obtain (45) for i = 4. Lemma 5 is proved.
1

From Lemmas 4 and 5 it follows that the conditions of the fixed-point theorem
for contractions with respect to (33) are satisfied for sufficiently large R; and
sufficiently small t5. Therefore, the equation (33) and consequently the problem
(1), (3) has a unique solution. Their solutions are connected by means of formula
(39).

Let us establish the estimates (27)-(29). From the estimate (44) it follows that
for the solution w of (33) there is the inequality

(46) llwllo < Ry + ks Ro + Mot ([[w]l? + R2).

From this for 0 < ¢y < (2M31R2)™™ we obtain the result.
Taking into account formula (39) and Lemma 2 we get (27)-(29). Theorem 2

is proved. 1

Let u(t, z) be a solution of problem (1), (3) and #(t, ) be a solution of problem
(1), (3) for 6 = 4.

THEOREM 3: Let ug,ui, f,0,0 satisfy the conditions of Theorem 2. Then we

have inequalities

(47) lllu = &l < Mas)|6, — 8, ]lo;
(48) e [t 2) = 3 (t,2)| < Madlld; = 8o
(49) (e [uie(t ) = i (,2)| < Mas |6, — O o

Here m; = Mi(R,y, Rp).
Proof of Theorem 3: Let z = u — 4. Then
) 4
(50) 2y — kal(1 4 ug) 2], — ka2, = ks[0, — 6]+ k2 Y Pi(u, i)
=1

where P;(u, %) = Fi(u) — Fi(it) and F; are defined by formulas (35)—(39).
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At first we show that
(51) | PiCu, @)llo < Maetd|llu ~alll, i=1,2,3,4, 70>0.
It is easy to see that

P = (%, — i )(1+ul) ™ (1 + up) Ml
Hf — T~ )1 (T ()

+ug = g, )(1+ i) 71+ up) T (ui — dr,) = Z Q:.
From the Newton-Leibniz formula and Hélder’s inequality it follows that

~ -1 ~
(¢, 2) ~ @, (t,2)] < / [ (5,2) — @2 (5, )| ds < 572l — " lo.
From this and from (27), (43) we obtain

(52) [1Qille € Mazto]||u — if|].

From inequalities (19), (21), (27) and (43) by means of Sobolov’s embedding
theorems we get
(53)
192 +Qullo < Mastg® ( max. I~ i+ max[ut = D) < Maotg lu =
Using (52) and (53), we get (51) for 7 = 1.
The other inequalities (51) are proved in a similar way.

Applying estimates (17) to the linear equation (50) and taking into account
(51) we obtain

Il = alll < Mo (1187 ~ B llo + 5|1 ~ al]]).

From this for small ¢, we obtain the inequality (47). Inequalities (48)-(49) easily
follow from (47). Theorem 3 is proved. 1
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6.

Let us suppose that u(t,z) is known and consider the linear problem (2), (4).
THEOREM 4: Let ug(z) satisfy the condition of Theorem 1. Let u(t,z) satisfy
the conditions (27)—(29) for certain M; and ;. Let ¢ € L,,0p € W,?—Z/P and

(54) max(||¢|lo, [6olz—2/p) < R3

Then for sufficiently small ty the problem (2), (4) has a unique solution and the

estimate
(55) 6ll1,2 < M31(Rs +1)

holds. Here M3, depends on M; (i = 12,13,14).

Proof of Theorem 4: From the estimates (27)-(29) and (6) it follows that for
sufficiently small ¢y the functions u) and u}, are continuous, uniformly bounded
on @ (with respect to the functions u satisfying (27)-(29)) and

(56) 0<my <|1+ul(t,2)|™! <2mg!

Taking into account (55) and using theorem 9.1 from [2] we get unique solvability
of the problem (2), (4) and the estimate

(57) 18llx,2 < Maz(llp + ka(utz)*llo + |8ola-2/p) < MaaRs + Mss

where M; (i = 32,33,34) depend on M; (i = 12,13,14). Theorem 4 is proved.
]

The estimate (55) by means of (9) and (10) implies the continuity of the func-
tions 8 and 8, on @ and the inequality

58 max 8(t;2)| + 0.| < Mss(Rs +1) + [8o]5-
(58) (t,z)eql( 2 (E?‘écql | 35(Rs +1) + [6ol2-2/p
for 3 < p < +00. Here M3; is similar to Ms4.

Let now 8 be a solution of problem (2), (4) and § a solution of problem (2),
(4) for u = .
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THEOREM 5: Let ug,u, %, 8,0y satisfy the conditions of the Theorem 4. Then
(59) 16 — 8llx,2 < Magtg*|l|lu —ailll, 712>0

where M3g = Mse(Mi2, M3, Mis, R3).

Proof of Theorem 5: Using equation (2), we get for z = 0 — §

(60) zp — ka[(1+ ug) 7' 2], = ka[(8, — ui )1+ ul) N1+ ﬁz)ﬂ’
+(ig — ul ) +ul) T (L +aL) 70, + () — ul)[(1+ul) TN+ )T 6]
—ka[(uy; — ug,)0 — (6 - 0)] — ka(up, — Gy, )(ul, + i) = w;

(61) 2(0,z) =0, 2(0,z)=0; 2(t,0)=2(t,1)=0.
This implies in view of (9)

(62) 16 — 8ll1,2 < Mar][wllo.

Let us show that for a certain 43 the inequality

(63) lollo < Maa(t3'*llu — all] + £, /716 — 6]}1,2)

is valid.
For this we observe that if the function v(t, z) satisfies the condition v(0,z) = 0,
then we have the inequalities
Juax, |v(t, )| <Maet) V2,
(64) 3 [0t 2)] <Maolllolllts™";
IoZello <Manllfollitg ™.

The proof of these inequalities is not difficult and carried out with the help of
Newton-Leibnitz formula, Holder inequality and Sobolev’s embedding theorems.
Using these inequalities, (56), (57) and estimating w defined by (61), we obtain
inequality (62). It is easy to see that M3 depends on M; (i = 12,13,14) and R;.

The inequality (59) follows from (62) for sufficiently small ¢,. Theorem 5 is
proved. ]
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7.

Proof of Theorem 1: Let us consider the set
Se={0:110]l1,2 < R4,0(0,z) = 6o(z)}

in W,? as a complete metric space with the W)'? metric. Theorem 2 implies
the existence of a unique solution u of the problem (1), (3) for any § € Sg, and
sufficiently small ¢ = tj. Theorem 4 in turn implies the existence of a unique
solution 8 of the problem (2), (4) for sufficiently small t, = ¢!/ according to
the properties of the solution u. Choosing ty = min(t,t;), we obtain that the
operator § = N(0) is defined on Sk,.

Let us show that the operator 91 has the unique fixed point in Sg,. At first
let us show that for sufficiently large R4 and sufficiently small ¢y the inclusion

(65) NSk, C Sk,
is valid.
Taking into account (55) and the relation 6(0,z) = 6y(z), we get

||§||1,2 < My (Myz, Mys, Myg)(Rs + 1).

Here the constants M; (i = 12,13,14) are taken from the inequalities (27)-(29)
which are valid for the solution u(t, z) of the problem (1), (3) for fixed 8 € Sg,.
In order to prove (65) it is sufficient to show that

(66) M;,(R; +1) <R,

for any 8 € Sg,. In turn it is sufficient to show that Mj; does not depend on R,.
If # € Sg, and 3 < p < +00, then from inequalities (9) and (10) it follows that
6, € C[Q] and
(max 162, 2)| < Ma2(||6ll1,2 + 160]2—2/p)-
This implies that
16 o < Maa(8l12 + 18la-2/p )0’ < Mus(Ra + Ro ).
Choosing tq sufficiently small we get

16.1l0 < Ro
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for fixed Ry uniformly with respect to 8 € Sg,. From this and theorem 2 we have
that the constants M; (: = 12,13,14) (and Mj; accordingly) does not increase
for increasing Ry. Therefore, the inequality (66) is valid for sufficiently large R4
(with smaller ¢, if necessary). The inequality (65) is established.

Let us show that the operator 91 is a contraction in Sg,. Let 8; = 2(6),8; =
9(f) where 6,6 € Sg, and u,i be a solution of (1), (3) for § and §. From
Theorem 5 we get

(67) 161 — 61111,2 < Mot |fu — dl||.
In turn from Theorem 3 it follows that
(68) W — @l] € Mas||6 — 81,2

From (67) and (68) we obtain that 9 is a contraction in Sg, for sufficiently small
to.

Now applying the fixed point theorem we get the existence of a unique fixed
point 8 of the operator M. It is easy to see that the pair 8, u (u is the solution
of (1), (3) for this fixed point §) is a unique solution of the problem (1)-(4).
Theorem 1 is proved. ]
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