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ABSTRACT 

The local solvability of the initial-boundary value problem in spaces of 

summable functions for some one-dlmensional system of equations of ther- 

moviscoelasticity is established. The nonlinearities in equations are de- 

termined by the difference between Lagrangian and Eulerian coordinates. 

The coercive approach implies s necessary condition on the initial data. 

, 

The purpose of this paper is to establish a locM solvability of the initiM-boundaxy 

value problem associated with the equations of one-dimensionM physical linear 

thermoviscoelastieity 

" " - k~[(1 - ' , - 1  , ,  , ,  , (1)  , , , ,  - kx , ,~ .  . , ~ . ~  , , ,~ j .  - k~o~ = .f(t ,  ~ )  

(t,x) EO=[O, to]x[O,l], ki>O; 

(2)  0~ k4[(1 , -x  , ,  ,, . 2 - + , , . )  e . ] .  - k~O,, , .  + k ~ ( , , , . )  = ~o(t, ~) ,  (t,  ~ )  E O, k ,  > O; 

(3)  u ( 0 , ~ )  -- u 0 ( : ) ,  < ( 0 , ~ )  = ~ 1 ( : )  (0 < • < 1), 

u ( t , 0 )  = ~ ( t , 1 )  = 0 (0_< t_< t0); 

(4) 8(O,z)=Oo(x) (O<x<l) ,  8(t,O)=O(t,1)----O (O _< t _< to). 
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Here u(t, x) and 8(t, x) denote displacement and temperature of a medium. The 

equations (1) and (2) are the conservation laws of impulse and energy in La- 

grangian coordinates, respectively. The model (1)-(4) is constructed under the 

following conditions: 1) the stress tensor (one-dimensional) is a linear combina- 

tion of Almansi strain tensor and the tensor of velocity of deformations; 2) the 

internal energy is a linear combination of the temperature and a square of the 

strain; 3) the Fourier law for a heat conduction is valid. 

The cases of thermoelasticity (k2 = 0) and viscoelasticity (8 = 0) were consid- 

ered in [3] and [4], [5]. Here we establish similar results in the general case. 

. 

A solution of problem (1)-(4) is defined to be a pair of functions u(t, x), O(t, x) 

having all (generalized) derivatives contained in the equations (1)-(2) in L v = 

Lp(Q), 1 < p < +oo and satisfying equations (1)-(2) and conditions (3)-(4). 

It is supposed in addition that 

(5) l + u : ( t , x ) > O ,  (t,x) e Q .  

Let w k," (see [1]) be a Banach space of the functions on Q having in Lp(Q) , , p  

all derivatives up to order k with respect to t and up to order m with respect 

to x. Let W~ be a Banach space of the functions ~(x), 0 _< x _< 1, having 

all derivatives up to order k (not necessary integer) in Lv[O , 1]. We denote by 

]1" ][k,m, [" [~, ]1" ][0 and I" ]0 the norms in wk,m w k  Lp(Q) and Lp[0,1], ~ p  , , - p ,  

respectively. And finally, we use the notation 

0 k 
W ,  = {~(x): ~(x) e W~,~0(0) = ~(1) = 0}. 

0 2 TfiI;,2--2/P THEOREM 1: L e ~ f , ~ E L p  f o r s o m e p E ( 3 ,  oo). Letuo E W v ,  u] E ,~p , 

T~z 2-2/p Let 80E vr p 

(6) l+u; (x)>0 ,  0 < x < l .  

Then/'or sufficiently small to there exists a unique solution of the problem (1)-(4). 

Note that the necessity of our conditions on initial data follows from the prop- 

erties of solutions (see below) of problem (1)-(4) according to results on linear 

parabolic initial-boundary value problems from [2]. 
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3. 

Now we shall give a sketch of the proof of Theorem 1. Consider a certain set 
SR in W l'z. Take an arbitrary 0 E SR and find a solution u of problem (1), (3). 

Then find a solution 0 of problem (2), (4) for this u. Denote by 9l the operator 

assigning 0 to 0. We shall show that the operator 9l has a unique fixed point 

8 in SR for sufficiently small to and, hence, the pair 8, u (u being solution of 

problem (1), (3) for this 0) is a unique solution of problem (1)-(4). The auxiliary 

results on solvability and estimates for solutions of a certain linear problems are 

established in §4, solvability and estimates of problems (1), (3) and (2), (4) are 

obtained in §5 and §6. The direct proof of Theorem 1 is in §7. 

4. 

Let us consider at first the linear problem: 

I i - 1  I t (7) v, - k2[(1 +=o(X))  , , ,]~ = z ( t , x ) ,  (t, x) E Q; 

(8) v ( O , z ) = u l ( z ) ,  O < z < l ;  v( t ,O)=v( t ,  1)=O, 0 < t < t 0 .  

From [2] and [6] it follows that the problem (7)-(8) has a unique solution for any 
,2 T 2-2/e z E L e and ul E ,, e (uo(x)  satisfies the conditions of Theorem 1) and the 

estimate 

(9) Ilvll,,~ + max Iv(t,x)l~_~/, < Ml(llzll0 + lu,12-~/,) 
o_<,_<,o 

holds. Here M1 depends on uo(x). 

The continuous embedding (see [1]) 

(10) W~ -2/p C C1[0, 1] 

and (9) imply the inequality 

(3 < p  < co) 

max I¢,~(t,.) - ¢ ( o , x ) l  < M~tT°(II~II1,2 + I~(o,x)h_~/, , ) ,  
(t,~)eQ 

p - 3  
0 < 7 0  < - - ~ ,  

(12) 

(11) m a x  Iv'At,:v)l < M2(llzllo + lulh-2/p). 
(t,x)EQ 

Choosing pl E (3,p) and using inequalities (9) and (10) for the chosen pl it is 

easy to show that inequality 
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is valid for arbitrary fi(t, x) E W~'2. 

This and (9) yield 

(13) max I ¢ , ( t , x )  - , ,' ,(x)l < M4t~°(llzllo + I , , , I~ -2 /P .  
(t,z)EQ 

Now consider the problem 

(14) 

Isr. J. Math. 

" " k ~ [ ( l + , , ~ ( x ) ) - '  " ' utt - k l u z z  - u t z ] z  = w(t ,x ) ,  ( t ,x )  E Q; 

(15) u(O,x) = rio(x), u't(O,x) = u,(x), 0 < x < 1; 

=(t,  o)  = =(t ,  1) = o, o < t < to. 

Denoting u~ = v ,  representing equation (14) in the form (7) with 

(16) z = w + kl x)ds + u 0 ~ , ( ~ ,  . 

and inversing the operator generated by problem (7)-(s) in Lp, we obtain the 

following result. 

,~r 2-~/p and satisfying the conditions of LEMMA 1: For anyw q Lp, rio E ,v p uo,ul 

Theorem 1 the problem (14)-(15) has a unique solution and the estimate 

Illulll < M ,  ffit(fio, ul ,  w) (17) 

holds. Here 
I I I  I I  IIMII Ilu'l, llo + I1,,,~11o + + = Ilu~ll0 IMI0, 

~J[("~O, it1, w) = I,~oI~ + I,,,b-~/~ + II~IIo. 

In addition to Lemma 1 we have 

LEMMA 2: Under the conditions of Lemma I for a solution of problem (14)-(15) 

the inclusions 

(18) 

and estimates 

(19) 

! II  u, ~ ,  u,~ ~ C[Q] 

max lutz(t,x) -- Ulo(X)[ < M6t'~'9~(fio, ul,w), "71 = "Yo + 1; 
(t,z)eQ 
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(20) 

ONE DIMENSIONAL PROBLEM OF THERMOVISCOELASTICITY 

m a x  l u " t ( t , x ) -  u~(x)l < M v t ~ o ' 9 ~ ( f i o , u l , w ) ,  72 = 78; 
(t,z)Eq 

55 

" _ . t T a  ~ (21) max I, ,~.(t ,~) =~'(x)10 < Ms 0 ~'~(I/0,1/1,w), "f3 = I -- l i p  
O<t<_to 

are wa/id. 

P r o o f  o f  L e m m a  2: From the definition of a solution of problem (14)-(15) it 

follows that z defined by (16) belongs to Lr. Then v = u~ is a solution of 

, is continuous and the estimate problem (7)-(8) for this z. Therefore, u~" = v x 

(20) follows from (13). 

Since 

I' (22) u'x(t , x )  - u'z(O , x )  = ' u't'x(s , x ) d s ,  

the estimate (19) follows from (20). In order to obtain inequality (21) we have 

to differentiate (22) by x and apply Hblder's inequality and estimate (17). 

Lemma 2 is proved. I 

Let u I and u 2 be solutions of problem (14)-(15) for w = w 1 and w = w 2 

respectively. 

LEMMA 3: L e t  w i E Lp( i  = 1,2) and u0,fi0,Ul sa t i s f y  the  cond i t ions  o f  L e m m a  

2. T h e n  there are inequal i t i e s  

(23) max [~-~-0 u l ( t , x ) -  ~U2( t ,X)]  < M9t~4Hw 1 -  w2H 0, 
(t,x)eq ax ( I x ,  

7 4 = 7 0 + 1 ;  

(24) 
0 2 0 2 (,,m)%xQ I~-~-z ul(t, x) - ~-~.z u2(t, z)[ < M ~ o t ' ~ l l w  1 - w211o, 

7~ = 70; 

(25) 
0 ~ 0 2 

0<m<~o I b-~-~ u 1(~, x) - b -~  u 2(t, x)[0 < Ml1~'° l it  1 - w2 II0, 

"f~ = 1 - 1 /p .  

The proof of the lemma easily follows from the linearity of problem (14)-(15) 

by means of inequalities (19)-(21). 



56 V.P. ORLOV Isr. J. Math. 

5. 

Let us assume that 0 is known and let us study solvability of problem (1),(3). 

THEOREM 2: Let f ,  no, ul satisfy the conditions of Theorem 1 and 0 E W °'x. 

Let 

(26) ~(uO,Ul,f) <_ R,, llCzll _< Ro. 

Then there exists sut~ciently small to such that the problem (1), (3) has a unique 

solution and the estimates 

(27) Illulll < M12; 

(2s) max lu 'At ,~) -u~ , ( . ) l  < M~ta" ,  - .  = ' n ;  
(t,~)eQ 

(29) max lu~'z(t,x) - u ~ ( x ) l  < M14t~ 8, 7s = 72 (,,z)eQ 

hold. Here Mi = Mi(R1,Ro), to ¢ to(Ra). 

Proof of Theorem 2: Let us represent problem (1), (3) in the form 

I I  I ~ 1 I I  I I I  I 
(30) ~ttt -- k2[(l -31- no(X)) Utx], - }lUxx = f -~- }3~x 

t x--I I I  I \ --I  I t  I t  
-~,~t-" ~,,"o - u~A(1  + , 4 ) - ' ( 1  + , ~ )  ,,,~ - k~(~,  - u'~)O + , , 'z)-~(~ + Uo) , ,=~,~ 

u' " - ' u "  " - k ,u'  - ~'~)(i  + u '~ ) - ' (1  + Uo) u , ~ ,  - k ~ ( u ~ , - , , ' ) ( l + , , ' ) - ' ( l +  o; o n . .  ~ o " - ~  ' "  

(31) u(O,x)=uo(x), uet(O,x)=u,(x), u(t ,O)=u(t,  1)=O. 

Denote the right-hand side of (30) by w. Let 

(32) U = L-l(u0,ul,W) 

where L -1 is the operator defined by the solution of (14)-(15). 

Using relations (30)-(31) and L-' we reduce problem (1), (3) to the equivalent 

integral equation 

(33) w = K(w) 
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where 

(34) 
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K ( w )  = f + k~# + k2[K,(w) - K2(w) - K3(w) + K,(w)]; 

(35) I "t--1 I I  
g l ( w )  = (u x - u~=)(1 -t- u'=)-2(1 + Uo) ut= (-- Fl(U)); 

(36) g2(w) (u~ u lx) ( l+u~) -2(1-  ,\-1 , , = - ~-"0) u ~ . , ~  ( -  P2(-)); 

t - 1  i - 2  i t  i i  (37) K3(w) = (u~o - u~)(1 + u~) (1+  u0) utxu o (= F3(u)); 

(3s) I \ --I  Ill K , ( w )  = (U~o - u'x)(1 + Utz)--l(1 -~- ~0) Utzz (-"=~ F4(u)). 

We have in mind 

(39) u=L-1(uo,ul,w). 

We establish unique solvability of (33) by means of the fixed-point theorem for 

contractions. Let 

SR2 = {w:  w ~ Lp, Ilwll0 _< R2}  

LEMMA 5: Let R2 be suf6ciently large and to be sufilciently sma/l. Then we have 

the inclusion 

(40) 

LEMMA 6: 

inequality 

(41) 

KSR2 C SR~. 

Under conditions of Lemma 5 for any wl, w~ 6 SR2 we have the 

IlK(w1) - g(w=)ll0 ~ M a s t g ~ l l w l  - w2110, 

Proof of Lemma 5: At first let us prove that for any 

m 0  
(42) tO _~ I T ( R 2  Jl" 2R1)] -'~1 

there is the inequality 

79 >0.  

(m0 = rain I1 + u;(x)[), 
0 < z < l  

(43) 11 + ul~(t,x)1-1 < 2too 1. 
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Really, from (39) and (20), (26) for / = w we get 

Jl + u'x(t, x)l > I1 + u~(z)l - max [u'( t ,  z )  - u~(x)l 
tjX 

> mo -M6t 'g '~ (uo ,ua ,w)  > mo -Met'~'(R2 + 2R1). 

This implies (43) in view of (42). Next, estimating K(w)  and using (34) and 

(26), we have 

4 4 

IlK(w)ll0 _< Ilfll0 + k3110':l10 + k3 ~ IIK~(w)ll0 _< Ra + k3Ro + ~ IIK~(w)ll0. 
i=1 i=1 

Estimating the I1 II0 -norm of the term containing the highest derivative and 

the uniform norm of the other terms and using inequalities (17), (20), (26) and 

(43), we obtain 

IIK4(w)ll0 < M16t'g'~2i12(uo,ul, w) <_ M17tg'(R2 + R1) 2. 

In a similar way we get 

Ilgi(w)[[o < M18tZo'(Rz + R1), i ~ 4. 

From the latter inequalities it follows that 

(44) IIK(w)ll0 < R1 + kzRo + M19t'g'(llwllg + R21). 

Choosing R2 > R1 + kzRo and to sufficiently small, we get (40). Lemma 4 is 

proved. II 

Proof of Lemma 5: It is sufficient to prove the inequalities 

(45) IIKi(w~) - Ki(w2)ll0 <_ Mzot'~gllwl - w2110, 1 < i < 4. 

We consider only the case i = 4. It is obvious that 

K4(w,)  - K4(w2) = (U~o - u ' ) ( l  + u'o)-'(l + u'=)-t[ut=='" - vtxxJ"' ' 
l - - 5  l I ~ I I I  

+(Uo - u'x)(1 + + + - u )v,x  

l \--I l i t  +(u• - v:)(1 + u~)-'(1 + v~) v ,~ .  

Here u = L- l (u0,  ul,  wx), v = L -1 (u0, Ul, w2). Using estimates (17), (14), (23), 

(43) and estimating the I1" II0 norm of the highest derivatives and the uniform 
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norm of the lower derivatives, we obtain (45) for i = 4. Lemma 5 is proved. 
| 

From Lemmas 4 and 5 it follows that the conditions of the fixed-point theorem 

for contractions with respect to (33) are satisfied for sufficiently large R2 and 

sufficiently small to. Therefore, the equation (33) and consequently the problem 

(1), (3) has a unique solution. Their solutions are connected by means of formula 

(39). 
Let us establish the estimates (27)-(29). From the estimate (44) it follows that 

for the solution w of (33) there is the inequality 

(46) Ilwllo _< R, + ksRo + M=xtE'(ll~llo = + R,=). 

From this for 0 < to < (2M21R2) -71 we obtain the result. 

Taking into account formula (39) and Lemma 2 we get (27)-(29). Theorem 2 

is proved. | 

Let u(t, x) be a solution of problem (a), (3) and fi(t, x) be a solution of problem 

(1), (3) for 0 = #. 

THEOREM 3: Let uO,Ul,f, 6,~ satisfy the conditions of Theorem 2. Then we 

have inequalities 

(47) II1~ ~ l l l < M = ~ l l e L  " ' - _ - e ,  llo; 

(48) m a x  lu '=(t ,=)  - ~ '= ( t ,z ) l  < M 2 4 1 1 e ' =  - #'=11o; 
(,,=)eq 

(49) max 1~7,(t,=) " "  - ut~(t,x)l < M2sl[¢~ - " e~llo.  
(t,x)eQ 

Here mi ---- Mi (  RI , Ro ). 

Proof of Theorem 3: Let z = u - ft. Then 

(50) 
4 

z' / , -  k2[(a + u~)-' z~',]', - klZ", = k3[e', -~' ,]  + k2 ~ p,(u, ~) 
i= l  

where Pi(u, fi) = Fi(u) - Fi(fi) and F / a r e  defined by formulas (35)-(39). 
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At first we show that 

(51) IIP~(u,,a)llo ~ _ M 2 e t ' d ' ° l l l u - ~ , l l l ,  i =  1,2,3,4, ~10 > 0 .  

It is easy to see that 

P l ( U , ~ )  "" , . - 1  ,, = ( ~ =  - u " 0 ( 1  + u ' ) - 1 ( 1  + u0) u , ,  

+ ( u g  " " - - , , = ) ( u ~  u ' ) ( 1  + u ' ) - ' ( 1  + a ' ) - ' ( 1  - " - '  " -t- Uo ) u tz 
3 

+ ( u ~  -- " "  - ,  -1  , -1  ,, -,, 
+ Uo) (u t "  u t ' )  Z Q i "  u , , ) ( l + u z )  (1 - = 

i= l  

From the Newton-Leibniz formula and Hflder's inequality it follows that 

~0 t I x I,t ] ' I t t t z t a ,  X '  Uz 1,1; ][~ttz"'t,X" < lit ,' 2~) ~111 . I--I /p. ,_  111 ~m . 
- - u t t e r s ,  - u = = ( s , z ) l  d s  < to I 1 " = ~ -  Uu~llo- 

From this and from (27), (43) we obtain 

(52)  IIQlllo _~ M 2 7 t o l l l u  - ~111. 

From inequalities (19), (21), (27) and (43) by means of Sobolov's embedding 

theorems we get 

(53)  

IIQ2 + O~llo <- M2st.'n'(  max  lu' -'~'~1 + m a x  l u=-u ,~ l )<_M2~t '~ ' l l lu -C ' l l l . "  -" 

Using (52) and (53), we get (51) for i = 1. 

The other inequalities (51) are proved in a similar way. 

Applying estimates (17) to the linear equation (50) and taking into account 

(51) we obtain 

Illu ~111 < Mao(ll¢= ~' - _ - 0=11o + to~'°lllu - ~111). 

From this for small to we obtain the inequality (47). Inequalities (48)-(49) easily 

follow from (47). Theorem 3 is proved. | 



Vol. 78, 1992 ONE DIMENSIONAL PROBLEM OF THERMOVISCOELASTICITY 61 

6 .  

Let us suppose that u(t, x) is known and consider the linear problem (2), (4). 

THEOREM 4: Let uo(x) satisfy the condition of Theorem 1. Let u(t, z) satisfy 

the conditions (27)-(29) for certain Mi and 7i. Let ~o e Lp, 80 e W 2-2/v and 

(54) m x(l] llo, < R3 

Then for su~ciently small to the problem (2), (4) has a unique solution and the 

estimate 

(55) 110111,2 < M31(R3 + 1) 

holds. Here M31 depends on Mi (i = 12,13, 14). 

Proof of Theorem 4: From the estimates (27)-(29) and (6) it follows that for 

sufficiently small to the functions u~ and u~ are continuous, uniformly bounded 

on Q (with respect to the functions u satisfying (27)-(29)) and 

(56) 0 < rnl < 11 +u~(t,x)1-1 < 2too 1 

Taking into account (55) and using theorem 9.1 from [2] we get unique solvability 

of the problem (2), (4) and the estimate 

II 2 (57) 110111,2 < M32(ll  + k3(u, ) II0 + 10oh- /p) <_ M33R3 + MR4 

where Mi (i = 32, 33, 34) depend on Mi (i = 12, 13,14). Theorem 4 is proved. 
| 

The estimate (55) by means of (9) and (10) implies the continuity of the func- 

tions 0 and #~- on Q and the inequality 

(58) max [a(t ,z)[+ max 10"[<M35(R3+l)+10012_~/p 
(t ,=)eO (t,=)~O - 

for 3 < p < -boo. Here M35 is similar to M34. 

Let now/9 be a solution of problem (2), (4) and 0 a solution of problem (2), 

(4) for u = ~. 
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THEOREM 5: Let u0,u, fi, 8,00 satisfy the conditions of the Theorem 4. Then 

(59) II 8 - ~111,2 < M36t;"'lll u - hill, -r12 > 0 

where M3o -- M3s(M12,MI3,M14,Ra). 

Proof  of Theorem 5: Using equation (2), we get for z = 0 - 

I \ - - 1  I I I  ~11 ~1 I ' k4[(1 + U s )  z zJ  z = (60) z, - k , [ ( ~ =  ~"~)(z + ~'~)-1(1 + ~ ) 8 ~  

- ,  , - 1 ~ , ,  ~ ' ) - 1 ( 1  + ~ z )  ]~8~1 +(fi'~ - u~) (1  + u ' ) - l ( 1  + us )  g ,x  + (fi~ - u'~)[(1 + - ,  - 1 ,  ", 

- k ~ [ ( ~ 7 ~  - ~,~)8" - u,z(8-" - ~)1 - k~,~",~ - "  "" " + ~,~)-" = w;  - -  U t z ) L U t x  

(61) z ( 0 , x ) = 0 ,  z't(O,x)=O; z(t,O)=z(t, 1)=O. 

This implies in view of (9) 

(62) lie - ~111,~ <_ M3,11wllo.  

Let us show that for a certain 3'13 the inequality 

(63) Ilwll0 < M38(tX'3111,, - sill + t~- l /Pl le  - e111,2) 

is valid. 

For this we observe that if the function v(t, z) satisfies the condition v(0, x) = 0, 

then we have the inequalities 

.1 7t.¢ ~ l - - 1 / p  
m a x  Iv ( t ,x ) l - - - ,39~o ; (t,z)~O 

(64)  m a x  I v ' ( t , z ) l  <M4oilivlllt~-l/e; 
(t,z)~Q 

llv"~ll0 <M4,111vlllt~ -lIp 

The proof of these inequalities is not difficult and carried out with the help of 

Newton-Leibnitz formula, HSlder inequality and Sobolev's embedding theorems. 

Using these inequalities, (56), (57) and estimating w defined by (61), we obtain 

inequality (62). It is easy to see that/1438 depends on Mi (i = 12, 13, 14) and Rz. 

The inequality (59) follows from (62) for sufficiently small to. Theorem 5 is 

proved. | 
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7. 

Proof of Theorem 1: Let us consider the set 

& = {o: I lel l , ,= _< R,,o(o,=) = Oo(=)} 

in W 1,2 as a complete metric space with the W 1,2 metric. Theorem 2 implies 

the existence of a unique solution u of the problem (1), (3) for any 8 E SR4 and 

sufficiently small to = t~. Theorem 4 in turn implies the existence of a unique 

solution 8 of the problem (2), (4) for sufficiently small to = t~ according to 

the properties of the solution u. Choosing to = min(t~,t~), we obtain that the 

operator 0 = 9~(6) is defined on SR4. 

Let us show that the operator 91 has the unique fixed point in SR4. At first 

let us show that for sufficiently large R4 and sufficiently small to the inclusion 

(65) 9'lsn,, c SR,, 

is valid. 

Taking into account (55) and the relation 0(0, x) = 00(z), we get 

11~11,,2 _< M3, ( M~2, M,3, M .  )( R3 + 1). 

Here the constants M~ (i = 12, 13, 14) are taken from the inequalities (27)-(20) 

which are d i d  for the solution =(t, =) of the problem (1), (3) for fixed 0 E SR,. 
In order to prove (65) it is sufficient to show that 

(66) M31(R3 + 1) < R4 

for any 8 E SR~. In turn it is sufficient to show that M3, does not depend on R4. 

If 8 E SR4 and 3 < p < + ~ ,  then from inequalities (9) and (10) it follows that 

el= E C[Q] and 

max le'(t,=)l < M,=(IlelI,,2 + l e o h - 2 / p ) .  (,,z)~Q 

This implies that 

II¢~IIo _< M,~(IIelI,,~ + leol~-~/,)t~/' _< M,~(R, + Ro)t~/'. 

Choosing to sufficiently small we get 

lle'~llo ~ 
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for fixed R0 uniformly with respect to 0 E SR4. From this and theorem 2 we have 

that the constants Mi (i = 12,13, 14) (and M31 accordingly) does not increase 

for increasing R4. Therefore, the inequality (66) is valid for sufficiently large R4 

(with smaller to if necessary). The inequality (65) is established. 

Let us show that the operator f i  is a contraction in Sn4. Let 01 = fi(0), 01 = 

fi(~}) where 0,0 G Sn2 and u, fi be a solution of (1), (3) for 0 and 8. From 

Theorem 5 we get 

(67) II01 - 011[1,2 ~< M36tg"' II1 , -  111. 

In turn from Theorem 3 it follows that 

(68) Illu -  111 M4 IIO - @111,2. 

From (67) and (68) we obtain that 9I is a contraction in SR~ for sufficiently small 

40. 
Now applying the fixed point theorem we get the existence of a unique fixed 

point O of the operator fi. It is easy to see that the pair 0, u (u is the solution 

of (1), (3) for this fixed point 0) is a unique solution of the problem (1)-(4). 

Theorem 1 is proved. I 
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